Poisson map

Definition.

Given two Poisson manifolds $M$ and $N$, a map $\phi:M\to N$ is a Poisson map if

$$ \{F,G\}_N=\{F\circ \phi,G\circ \phi\}_M. $$

for all smooth functions on $N$.

$\blacksquare$

If the manifolds happen to be symplectic manifolds then $\phi$ is a symplectomorphism. In particular, if the manifolds are the phase space of a classical mechanical system then $\phi$ is a canonical map.

The Hamiltonian vector fields give rise to a local group of transformations which are Poisson maps (@olver86 proposition 6.16).

________________________________________

________________________________________

________________________________________

Author of the notes: Antonio J. Pan-Collantes

antonio.pan@uca.es


INDEX: